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Chiral-glass transition and replica symmetry breaking of a three-dimensional
Heisenberg spin glass
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Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass
with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The oc-
currence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established.
Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The
calculated overlap distribution suggests the appearance of a peculiar type of replica-symmetry breaking in the
chiral-glass ordered state.

PACS numbg(s): 64.60.Fr, 75.10.Nr, 75.40.Mg, 64.60.Cn

While experiments have provided convincing evidence Numerical studies on the 3RY spin glasses have given
that spin-glas§SG magnets exhibit an equilibrium phase strong support to the occurrence of a finite-temperature
transition at a finite temperature, the true nature of the exehiral-glass transitiof8—10]. In the Heisenberg case, while
perimentally observed SG transition and that of the low-previous numerical works agreed in that the standard SG
temperature SG phase still remain open problddls A  order occurred only at =0, the question whether there re-
simple Ising model has widely been used as a “realistic” SGally occurs a finite-temperature chiral-glass order has re-
model in the studies, e.qg., of the critical properties of the SGnained inconclusivé3,4]. Very recently, an off-equilibrium
transition, or of the issue of whether the SG state exhibits &onte Carlo simulation by one of the authors has given evi-
spontaneous replica-symmetry breakifi®SB). One should dence for the occurrence of a finite-temperature chiral-glass
bear in mind, however, that the magnetic interactions inorder in the 3D Heisenberg SG]. However, the full critical
many SG materials are nearly isotropic, being well describegroperties of the chiral-glass transition as well as the prop-
by an isotropic Heisenberg model, in the sense that the magprties of the chiral-glass ordered state itself, particularly the
netic anisotropy is considerably weaker than the exchangeguestion of the possible RSB, still remains largely unclear. In
interaction. In apparent contrast to experiments, numericahis Rapid Communication, we perform extensieguilib-
simulations have indicated that the standard spin-glass ordeium Monte Carlo simulations of a 3D Heisenberg SG in
occurs only at zero temperature in the three-dimensionabrder to determine the detailed static and dynamic critical
(3D) Heisenberg SG2-6]. Although the magnetic anisot- properties and to clarify the nature of the chiral-glass ordered
ropy inherent to real materials is often invoked to explainstate.
this apparent discrepancy with experiments, it still remains Our model is the classical Heisenberg model on a simple
puzzling that no detectable sign of a Heisenberg-to-Isingubic lattice withN= L2 spins defined by the Hamiltonian
crossover has been observed in experiments, which is usually
expected to occur if the observed finite-temperature transi- H=-3 3.5-S
tion is caused by the weak magnetic anisotrfpy?]. & Y '

In order to solve this apparent puzzle, a chirality mecha-
nism of experimentally observed spin-glass transitions wawhereS=(S‘,s,S) is a three-component unit vector, and
proposed by one of the authd®. This scenario is based on the sum runs over all nearest-neighbor pairs. The interactions
the assumption that an isotropic 3D Heisenberg SG exhibitd;; are random Gaussian variables with zero mean and vari-
a finite-temperaturehiral-glasstransition without the con- anceJ. The local chirality at theith site and in theuth
ventional spin-glass order, in which only spin-reflectiondirection, y;, , is defined forthree neighboring spins by the
symmetry is broken with preserving spin-rotation symmetry.scalar(2,4]

Chirality is an Ising-like multispin variable representing the

sense or the handedness of the noncollinear spin structures XiM:S+éM’(SXS—éM)’ (2)
induced by spin frustration. In this scenario, all essential fea- A

tures of many real SG transitions and SG ordered statesheree, (w=X,y,z) denotes a unit lattice vector along the
should be determined by the properties of the chiral-glasg axis.

transition and of the chiral-glass statethe fully isotropic Monte Carlo simulation is performed based on the ex-
systemwhile the role of the magnetic anisotropy is second-change MC method, sometimes called “parallel tempering,”
ary which “mixes” the spin and the chirality and “reveals” which turns out to be an efficient method for thermalizing
the chiral-glass transition as an anomaly in experimentallysystems exhibiting slow dynami€g]. By making use of this
accessible quantities. method, we have succeeded in equilibrating the system down
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to the temperature considerably lower than those attained in 1.0
the previous simulationg2,4]. We run two independent se-

qguences of systemgeplica 1 and 2in parallel, and compute 08 |
an overlap between the chiral variables in the two replicas,

1 06 |
- 1),,(2) 3
qX_3N % Xi,uXi,u . (3) °°04 I
In terms of this chiral overlag, , the Binder ratio of the ) .
chirality is calculated by 021 (a) spin
1 [(ap] 0 ' ' ' ' To16 —a
gCG( L) = _< 3—- ZX 2| (4) iy L;12 [P —
2 [<qx>] 08 L=10 - s
L=8 -l
where(- - -) represents the thermal average énd- | repre- 06} L=6 - |

sents the average over bond disorder. For the Heisenberg
spin, one can introduce an appropriate Binder ratio in termsé 04 }
of a tensor overlag,, (u«,r=X,y,z) which has 3=9in-

dependent componenitd], 02} (b) chirality
1 (1)(2) 0 og W E
Q=1 2 SWST (mr=xy.2), (5) E B
I Bl
_0.2 1 1 1 1 1 1
' T
2 [<q2 q2 )] FIG. 1. Temperature and size dependence of the Binder ratios of
ey W the spin(a) and of the chirality(b).

gSG(L):E 11-9 = |- (6)
with increasinglL, whereas its position gradually shifts to-

ward lower temperature. Note that, if the systems would not

The lattice sizes studied ate=6,8,10,12, and 16 with peri- €Xhibit any finite-temperature transitiongcg(T;L—<°)

odic boundary conditions. Equilibration is checked by moni-S"uld be equal to zero at afiy-0 and to unity all =0 (for

toring the stability of the results against at least three timed'® Nondegenerate ground state as expected for the present
longer runs for a subset of samples. Sample average is tak&pussian coupling Sincegeg(T;L—) is a single-valued

over 1500 [=6), 1200 (=8), 640 (L=10), 296 ( unction of T, the existence of a negative d|p. growing with
=12), and 136 .= 16) independent bond realizations. Note hardl_y_ reconciles with _the absence of_a finite-temperature
that in the exchange MC simulations the data at differenf’@nsition so long as this tendency persists, and suggests the

temperatures are correlated. Error bars are estimated frofjiiral-glass transition occ_urring at=Tce>0 at whichgcg
statistical fluctuations over the bond realizations. takes anegativevalue unlike the standard cases of the 3D

The size and temperature dependence of the Binder rati ﬁwa_rds-Anngrksor(E_A) Sling n;o?el or the infinite-range
of the spin and of the chiralitygss andgeg, are shown in errington-Kirkpatrick SK) model.

Figs. 1@ and Xb), respectively. As can be seen from Fig. h More.ll',lt?ambiguous gstirr;ats Bte ga? t')l'?n obtained flrorln
1(a), gsg constantly decreases with increasingt all tem- the equilibrium dynamics of the model. Thus, we calculate

peratures studied, suggesting that the conventional spin—glaggth the spin and chirality autocorrelation functions defined

order occurs only at zero temperature, consistent with th
previous result§2—6]. Figure Xa) reveals thaggg for larger 1
lattices (=10,12,16) exhibits an anomalous bending Cot)= 2>, [(S(to)-S(t+1e))], 7)
aroundT/J=0.15, suggesting a change in the ordering be- N

havior in this temperature range. As can be seen from Fig. 1

1(b), the curves ofgcg for different L tend to merge for _ = ‘ _

larger L in the temperature range where the curveggf Cx(D= 3N % [xiu(to)Xiu(t+to)) ], ®
exhibit an anomalous bending. Furthermore, on incredsjng

the merging points gradually move toward higher temperawhere MC simulation is performed according to the standard
tures, suggesting that the chiral-glass transition indeed odieat-bath updating here. The starting spin configuratian at
curs at a finite temperature. Singgg for differentL do not ~ =tg is taken from the equilibrium spin configuration gener-
cross here atjcg>0, however, it is not necessarily easy to ated in our exchange MC runs.

unambiguously locate the chiral-glass transition point, or Monte Carlo time dependence of the calcula@gt) and
even to completely rule out the possibility of only a zero- C,(t) are shown in Fig. 2 on log-log plots at several tem-
temperature transition with rapidly growin@.g., exponen- peratures fol.=16. We found no significant difference in
tially growing) correlation length. Meanwhile, the calculated the data ofL =12 and 16, and the finite-size effect is negli-
dcs shows a negative dip whose depth gradually increasegible in our time window. As can be seen from Figag2
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X T a :‘:% the chirality defined by Eq9). The inset represents a log-log plot
O 001 . ..:‘%\* of the reduced chiral-glass susceptibility versus the reduced tem-
T, e peraturet=|(T—Tcg)/Tedl-
mw.vv\
\ If we combine the present estimate @ with the esti-
(b) chirality mate of B¢g from the off-equilibrium simulation of Ref5]
and use the scaling relations, various chiral-glass exponents
0001 o 00 1000 can be estimated to be=—1.7, Bee=1.1, ycc=1.5, vco
¢t [MCS] =1.2, andycs=0.8. The dynamical exponent is estimated to

be zog=4.7 by using the estimated value »fand the scal-
FIG. 2. Log-log plots of the time dependence of the equilibriuming relation\ = Bcg/Zcgrcs. While the dynamical exponent
spin (a) and chirality (b) autocorrelation functions at several tem- 7z . comes rather close to theof the 3D EA model, the
peratures. The lattice size is=16 averaged over 64 samples. In ghtained static exponents differ significantly from those of
(b), the best straight-line fit is obtained BtJ=0.16, represented by the 3D Ising EA model8=0.55, y=4.0, v=1.7 and 7
the broken line. ~—0.35[1d], suggesting that the universality class of the

Cs(t) shows a downward curvature at all temperature StudChiral'glaSS transition of the 3D Heiser!berg Spin gIaSS diﬂ:.ers
ied, suggesting an exponential-like decay characteristic offom that of the standard 3D Ising spin glass. The Possible
the disordered phase, consistently with the absence of tHeng-range and/or many-body nature of the chirality-chirality
standard spin-glass order. In sharp contrast to igt)  Interaction might be the cause of this deviation.

shows either a downward curvature characteristic of the dis- Further evidence of a phase transition is obtained from the
ordered phase, or an upward curvature characteristic of tHeehavior of theG parameter of the chirality defined by
long-range ordered phase, depending on whether the tem-

perature is higher or lower thaf/J=0.16, while just at [(a2)2]-[(a})]?

T/J=0.16 the linear behavior corresponding to the power- (L)= T NTE 9

law decay is observed; see Figh2 Hence, our dynamical [<qX>]_[<qX>]

data indicates that the chiral-glass order without the standar\c/i\/h.I hi . iginally introduced h
spin-glass order takes placeBts/J=0.160+0.005, below ile this quantity was originally introduced to represent the

which a finite chiral EA order parametefa>0 develops. non-self-averaging character of the systei], Bokil et al.

~argued that it was not necessarily[4@]. Still, a crossing of
Zé?é?iztrnzStlr?gepg\tvglri:v?/tzea;;-(é, (tt*)‘iff f’ Oigeen;i;g?; d G(L) for differentL, if it occurs, can be used to identify the
X

t0 bex =0.193+0.005. The estimatelieg is in good agree-  1nSitionL12]. As shown in Fig. 3, foff>Tcg G(L) de-
ment with the previous estimate of R¢g], Tcg/J=0.157 creases with mc_reasmg ‘eﬂd'”g to Z€10, while forT
+0.0L. <Tcg it tend; to increase with, thus I_e_ndlng further sup-
The behavior of the chiral-glass order parameter, or thé) orltntoFithe EX'\i’t:ngg olfaa %?:Sgist:ﬁgjggf?sg&%n of the
associated chiral-glass susceptibilxx@:SN[(qi)], turns hiral 9 | ' defi (:Fi)by N=r(S(a —a lculated
out to be consistent with this. In the inset of Fig. 3, we showC iral-overiap define P(qx)_R (ay qX).>] calculate
the reduced chiral-al . ~atatemperaturd/J=0.1, well below the chiral-glass tran-
e reduced chiral-glass susceptibiligee=xce/X", MO~ sition temperature. The shape of the calculaR{dy,) is
malized by the amplitude of the local chirality®  somewhat different from the one observed in the standard

E(l/SN)Ei,M[<xi2M>], versus the reduced temperatute Ising-like models such as the 3D EA model or the mean-field

=|(T—Tcg)/Tcg on a log-log plot. From the asymptotic SK model. As usualP(q,) has standard “side-peaks” cor-
slope of the data, the susceptibility exponent is estimated teesponding to the Edwards-Anderson order parameter
be yco=1.5+23. Note that the estimated susceptibility ex- *0ca. which grow and sharpen with increasihg The ex-
ponent is significantly smaller than that of the standard 30tracted value of- qg’é coincides with that evaluated from the

Ising EA model,y=4 [1d]. relaxation ofC,(t). In addition to the side peaks, an unex-
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0.045 T T lele existence of a negative dip in the Binder ratjgg and the
0.04 1 absence of a crossing gt at gcg>0 are consistent with
""" the occurrence of such one-step-like REB)J. Our data of
0.035 | e
P(q,) are also not mcompatlble with the existence of a con-
0.03 r tinuous plateau betweeh—q4,q54] in addition to the
0.025 - delta-function peaks. According to the chirality mechanism,
002 1 such novel one-step-like RSB should be realized ingpia
’ ordering of real Heisenberg-like spin glasses. We note that, if
0.015 | P(q,) has a nontrivial structure as suggested from Fig. 4, the
0.01 |
0.005 |

P(q)

denominator of Eq.(9) should remain nonzero at<QT
<Tce- Then, our data o65(L) in Fig. 3 indicates that the
chiral-glass state is non-self-averaging.

0 i et . . g - In summary, spin-glass and chiral-glass orderings of the
008 -006 -0.04 002 0 002 0.04 006 0.08 3D Heisenberg SG are studied by Monte Carlo simulations.
Ix Our observation both on statics and dynamics strongly sug-

gests the existence of a stable chiral-glass phase at finite
temperatures without the conventional spin-glass order. This
fact strengthens the plausibility of the chirality mechanism
for experimentally observed spin-glass transitions. The na-
pected “central peak” atj, =0 shows up for larget, which ~ ture of the chiral-glass ordered state as well as of the critical
also grows and sharpens with increasing his latter aspect, Phenomena are different from those of the 3D Ising SG, with
i.e., the existence of a central peak, is a peculiar feature trong S'm""".”t'es to the system ShOW'T‘g the. o_ne-step—llke
the chiral-glass ordered state never observed in the EA or SRSB: While its exact nature and physical origin have re-
models. Since we do not find any sign of a first-order tran- mained to be understood.

sition such as a d|scont|nU|ty in the energy, the specific heat The numerical calculation was performed on the Fuijitsu
nor the order parameteycg, this feature is likely to be re- VPP500 at the supercomputer center, ISSP, University of
lated to a nontrivial structure in the phase space associatétbkyo, on the HITACHI SR-2201 at the supercomputer cen-
with the chirality. We note that this peculiar feature is remi-ter, University of Tokyo, and on the CP-PACS computer at
niscent of the behavior characteristic of some mean-fieldhe Center for Computational Physics, University of
models showing the so-calleme-stedRSB[1b]. Indeed, the Tsukuba.

FIG. 4. Chiral-overlap distribution function beloW.s. The
temperature i§/J=0.1.
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