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Chiral-glass transition and replica symmetry breaking of a three-dimensional
Heisenberg spin glass
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Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass
with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The oc-
currence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established.
Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The
calculated overlap distribution suggests the appearance of a peculiar type of replica-symmetry breaking in the
chiral-glass ordered state.

PACS number~s!: 64.60.Fr, 75.10.Nr, 75.40.Mg, 64.60.Cn
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While experiments have provided convincing eviden
that spin-glass~SG! magnets exhibit an equilibrium phas
transition at a finite temperature, the true nature of the
perimentally observed SG transition and that of the lo
temperature SG phase still remain open problems@1#. A
simple Ising model has widely been used as a ‘‘realistic’’ S
model in the studies, e.g., of the critical properties of the
transition, or of the issue of whether the SG state exhibi
spontaneous replica-symmetry breaking~RSB!. One should
bear in mind, however, that the magnetic interactions
many SG materials are nearly isotropic, being well descri
by an isotropic Heisenberg model, in the sense that the m
netic anisotropy is considerably weaker than the excha
interaction. In apparent contrast to experiments, numer
simulations have indicated that the standard spin-glass o
occurs only at zero temperature in the three-dimensio
~3D! Heisenberg SG@2–6#. Although the magnetic anisot
ropy inherent to real materials is often invoked to expla
this apparent discrepancy with experiments, it still rema
puzzling that no detectable sign of a Heisenberg-to-Is
crossover has been observed in experiments, which is us
expected to occur if the observed finite-temperature tra
tion is caused by the weak magnetic anisotropy@1,2#.

In order to solve this apparent puzzle, a chirality mec
nism of experimentally observed spin-glass transitions w
proposed by one of the authors@3#. This scenario is based o
the assumption that an isotropic 3D Heisenberg SG exh
a finite-temperaturechiral-glass transition without the con-
ventional spin-glass order, in which only spin-reflecti
symmetry is broken with preserving spin-rotation symmet
Chirality is an Ising-like multispin variable representing t
sense or the handedness of the noncollinear spin struc
induced by spin frustration. In this scenario, all essential f
tures of many real SG transitions and SG ordered st
should be determined by the properties of the chiral-gl
transition and of the chiral-glass statein the fully isotropic
system, while the role of the magnetic anisotropy is secon
ary which ‘‘mixes’’ the spin and the chirality and ‘‘reveals
the chiral-glass transition as an anomaly in experiment
accessible quantities.
PRE 611063-651X/2000/61~2!/1008~4!/$15.00
e

x-
-

a

n
d
g-
e

al
er
al

s
g
lly
i-

-
s

ts

.

res
-

es
s

-

ly

Numerical studies on the 3DXY spin glasses have give
strong support to the occurrence of a finite-temperat
chiral-glass transition@8–10#. In the Heisenberg case, whil
previous numerical works agreed in that the standard
order occurred only atT50, the question whether there re
ally occurs a finite-temperature chiral-glass order has
mained inconclusive@3,4#. Very recently, an off-equilibrium
Monte Carlo simulation by one of the authors has given e
dence for the occurrence of a finite-temperature chiral-g
order in the 3D Heisenberg SG@5#. However, the full critical
properties of the chiral-glass transition as well as the pr
erties of the chiral-glass ordered state itself, particularly
question of the possible RSB, still remains largely unclear
this Rapid Communication, we perform extensiveequilib-
rium Monte Carlo simulations of a 3D Heisenberg SG
order to determine the detailed static and dynamic criti
properties and to clarify the nature of the chiral-glass orde
state.

Our model is the classical Heisenberg model on a sim
cubic lattice withN5L3 spins defined by the Hamiltonian

H52(̂
i j &

Ji j Si•Sj , ~1!

whereSi5(Si
x ,Si

y ,Si
z) is a three-component unit vector, an

the sum runs over all nearest-neighbor pairs. The interact
Ji j are random Gaussian variables with zero mean and v
ance J. The local chirality at thei th site and in themth
direction,x im , is defined forthreeneighboring spins by the
scalar@2,4#

x im5Si 1êm
•~Si3Si 2êm

!, ~2!

whereêm (m5x,y,z) denotes a unit lattice vector along th
m axis.

Monte Carlo simulation is performed based on the e
change MC method, sometimes called ‘‘parallel tempering
which turns out to be an efficient method for thermalizi
systems exhibiting slow dynamics@7#. By making use of this
method, we have succeeded in equilibrating the system d
R1008 ©2000 The American Physical Society
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to the temperature considerably lower than those attaine
the previous simulations@2,4#. We run two independent se
quences of systems~replica 1 and 2! in parallel, and compute
an overlap between the chiral variables in the two replica

qx5
1

3N (
im

x im
(1)x im

(2) . ~3!

In terms of this chiral overlapqx , the Binder ratio of the
chirality is calculated by

gCG~L !5
1

2 S 32
@^qx

4&#

@^qx
2&#2D , ~4!

where^•••& represents the thermal average and@•••# repre-
sents the average over bond disorder. For the Heisen
spin, one can introduce an appropriate Binder ratio in te
of a tensor overlapqmn (m,n5x,y,z) which has 3259 in-
dependent components@4#,

qmn5
1

N (
i

Sim
(1)Sin

(2) ~m,n5x,y,z!, ~5!

via the relation,

g SG~L !5
1

2S 1129
(

m,n,d,r
@^qmn

2 qdr
2 &#

S (
m,n

@^qmn
2 &# D 2 D . ~6!

The lattice sizes studied areL56,8,10,12, and 16 with peri
odic boundary conditions. Equilibration is checked by mo
toring the stability of the results against at least three tim
longer runs for a subset of samples. Sample average is t
over 1500 (L56), 1200 (L58), 640 (L510), 296 (L
512), and 136 (L516) independent bond realizations. No
that in the exchange MC simulations the data at differ
temperatures are correlated. Error bars are estimated
statistical fluctuations over the bond realizations.

The size and temperature dependence of the Binder ra
of the spin and of the chirality,gSG andgCG, are shown in
Figs. 1~a! and 1~b!, respectively. As can be seen from Fi
1~a!, gSG constantly decreases with increasingL at all tem-
peratures studied, suggesting that the conventional spin-g
order occurs only at zero temperature, consistent with
previous results@2–6#. Figure 1~a! reveals thatgSG for larger
lattices (L510,12,16) exhibits an anomalous bendi
aroundT/J.0.15, suggesting a change in the ordering
havior in this temperature range. As can be seen from
1~b!, the curves ofgCG for different L tend to merge for
larger L in the temperature range where the curves ofgSG
exhibit an anomalous bending. Furthermore, on increasinL,
the merging points gradually move toward higher tempe
tures, suggesting that the chiral-glass transition indeed
curs at a finite temperature. SincegCG for different L do not
cross here atgCG.0, however, it is not necessarily easy
unambiguously locate the chiral-glass transition point,
even to completely rule out the possibility of only a zer
temperature transition with rapidly growing~e.g., exponen-
tially growing! correlation length. Meanwhile, the calculate
gCG shows a negative dip whose depth gradually increa
in
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with increasingL, whereas its position gradually shifts to
ward lower temperature. Note that, if the systems would
exhibit any finite-temperature transition,gCG(T;L→`)
should be equal to zero at anyT.0 and to unity atT50 ~for
the nondegenerate ground state as expected for the pr
Gaussian coupling!. SincegCG(T;L→`) is a single-valued
function ofT, the existence of a negative dip growing withL
hardly reconciles with the absence of a finite-temperat
transition so long as this tendency persists, and suggest
chiral-glass transition occurring atT5TCG.0 at whichgCG
takes anegativevalue unlike the standard cases of the 3
Edwards-Anderson~EA! Ising model or the infinite-range
Sherrington-Kirkpatrick~SK! model.

More unambiguous estimate ofTCG can be obtained from
the equilibrium dynamics of the model. Thus, we calcula
both the spin and chirality autocorrelation functions defin
by

Cs~ t !5
1

N(
i

@^Si~ t0!•Si~ t1t0!&#, ~7!

Cx~ t !5
1

3N (
i ,m

@^x im~ t0!x im~ t1t0!&#, ~8!

where MC simulation is performed according to the stand
heat-bath updating here. The starting spin configurationt
5t0 is taken from the equilibrium spin configuration gene
ated in our exchange MC runs.

Monte Carlo time dependence of the calculatedCs(t) and
Cx(t) are shown in Fig. 2 on log-log plots at several tem
peratures forL516. We found no significant difference i
the data ofL512 and 16, and the finite-size effect is neg
gible in our time window. As can be seen from Fig. 2~a!,

FIG. 1. Temperature and size dependence of the Binder ratio
the spin~a! and of the chirality~b!.
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Cs(t) shows a downward curvature at all temperature st
ied, suggesting an exponential-like decay characteristic
the disordered phase, consistently with the absence of
standard spin-glass order. In sharp contrast to this,Cx(t)
shows either a downward curvature characteristic of the
ordered phase, or an upward curvature characteristic of
long-range ordered phase, depending on whether the
perature is higher or lower thanT/J.0.16, while just at
T/J.0.16 the linear behavior corresponding to the pow
law decay is observed; see Fig. 2~b!. Hence, our dynamica
data indicates that the chiral-glass order without the stand
spin-glass order takes place atTCG/J50.16060.005, below
which a finite chiral EA order parameterqCG

EA.0 develops.
From the slope of the data atT5TCG, the exponentl char-
acterizing the power-law decay ofCx(t)'t2l is estimated
to bel50.19360.005. The estimatedTCG is in good agree-
ment with the previous estimate of Ref.@5#, TCG/J50.157
60.01.

The behavior of the chiral-glass order parameter, or
associated chiral-glass susceptibilityxCG53N@^qx

2&#, turns
out to be consistent with this. In the inset of Fig. 3, we sh
the reduced chiral-glass susceptibilityx̃CG[xCG/x̄4, nor-
malized by the amplitude of the local chiralityx̄2

[(1/3N)( i ,m@^x im
2 &#, versus the reduced temperaturet

[u(T2TCG)/TCGu on a log-log plot. From the asymptoti
slope of the data, the susceptibility exponent is estimate
be gCG51.560.1

0.3. Note that the estimated susceptibility e
ponent is significantly smaller than that of the standard
Ising EA model,g.4 @1d#.

FIG. 2. Log-log plots of the time dependence of the equilibriu
spin ~a! and chirality ~b! autocorrelation functions at several tem
peratures. The lattice size isL516 averaged over 64 samples.
~b!, the best straight-line fit is obtained atT/J50.16, represented by
the broken line.
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If we combine the present estimate ofgCG with the esti-
mate ofbCG from the off-equilibrium simulation of Ref.@5#
and use the scaling relations, various chiral-glass expon
can be estimated to bea.21.7, bCG.1.1, gCG.1.5, nCG
.1.2, andhCG.0.8. The dynamical exponent is estimated
be zCG.4.7 by using the estimated value ofl and the scal-
ing relationl5bCG/zCGnCG. While the dynamical exponen
zCG comes rather close to thez of the 3D EA model, the
obtained static exponents differ significantly from those
the 3D Ising EA modelb.0.55, g.4.0, n.1.7 and h
.20.35 @1d#, suggesting that the universality class of t
chiral-glass transition of the 3D Heisenberg spin glass diff
from that of the standard 3D Ising spin glass. The Poss
long-range and/or many-body nature of the chirality-chiral
interaction might be the cause of this deviation.

Further evidence of a phase transition is obtained from
behavior of theG parameter of the chirality defined by

G~L !5
@^qx

2&2#2@^qx
2&#2

@^qx
4&#2@^qx

2&#2
. ~9!

While this quantity was originally introduced to represent t
non-self-averaging character of the system@11#, Bokil et al.
argued that it was not necessarily so@12#. Still, a crossing of
G(L) for differentL, if it occurs, can be used to identify th
transition @12#. As shown in Fig. 3, forT.TCG G(L) de-
creases with increasingL tending to zero, while forT
,TCG it tends to increase withL, thus lending further sup-
port to the existence of a phase transition atT5TCG.

In Fig. 4, we display the distribution function of th
chiral-overlap defined byP(qx8)5@^d(qx2qx8)&# calculated
at a temperatureT/J50.1, well below the chiral-glass tran
sition temperature. The shape of the calculatedP(qx) is
somewhat different from the one observed in the stand
Ising-like models such as the 3D EA model or the mean-fi
SK model. As usual,P(qx) has standard ‘‘side-peaks’’ cor
responding to the Edwards-Anderson order param
6qCG

EA , which grow and sharpen with increasingL. The ex-
tracted value of6qCG

EA coincides with that evaluated from th
relaxation ofCx(t). In addition to the side peaks, an une

FIG. 3. Temperature and size dependence of theG parameter of
the chirality defined by Eq.~9!. The inset represents a log-log plo
of the reduced chiral-glass susceptibility versus the reduced t
peraturet[u(T2TCG)/TCGu.



,
e
S
n
e

at
i

e

n-

m,

t, if
the

the
ns.
ug-
nite
his
m
na-
ical
ith

like
re-

tsu
of

n-
at
of

RAPID COMMUNICATIONS

PRE 61 R1011CHIRAL-GLASS TRANSITION AND REPLICA . . .
pected ‘‘central peak’’ atqx50 shows up for largerL, which
also grows and sharpens with increasingL. This latter aspect
i.e., the existence of a central peak, is a peculiar featur
the chiral-glass ordered state never observed in the EA or
models. Since we do not find any sign of a first-order tra
sition such as a discontinuity in the energy, the specific h
nor the order parameterqCG

EA , this feature is likely to be re-
lated to a nontrivial structure in the phase space associ
with the chirality. We note that this peculiar feature is rem
niscent of the behavior characteristic of some mean-fi
models showing the so-calledone-stepRSB@1b#. Indeed, the

FIG. 4. Chiral-overlap distribution function belowTCG. The
temperature isT/J50.1.
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existence of a negative dip in the Binder ratiogCG and the
absence of a crossing ofgCG at gCG.0 are consistent with
the occurrence of such one-step-like RSB@13#. Our data of
P(qx) are also not incompatible with the existence of a co
tinuous plateau between@2qCG

EA ,qCG
EA# in addition to the

delta-function peaks. According to the chirality mechanis
such novel one-step-like RSB should be realized in thespin
ordering of real Heisenberg-like spin glasses. We note tha
P(qx) has a nontrivial structure as suggested from Fig. 4,
denominator of Eq.~9! should remain nonzero at 0,T
,TCG. Then, our data ofG(L) in Fig. 3 indicates that the
chiral-glass state is non-self-averaging.

In summary, spin-glass and chiral-glass orderings of
3D Heisenberg SG are studied by Monte Carlo simulatio
Our observation both on statics and dynamics strongly s
gests the existence of a stable chiral-glass phase at fi
temperatures without the conventional spin-glass order. T
fact strengthens the plausibility of the chirality mechanis
for experimentally observed spin-glass transitions. The
ture of the chiral-glass ordered state as well as of the crit
phenomena are different from those of the 3D Ising SG, w
strong similarities to the system showing the one-step-
RSB, while its exact nature and physical origin have
mained to be understood.

The numerical calculation was performed on the Fuji
VPP500 at the supercomputer center, ISSP, University
Tokyo, on the HITACHI SR-2201 at the supercomputer ce
ter, University of Tokyo, and on the CP-PACS computer
the Center for Computational Physics, University
Tsukuba.
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